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The analysis of parallelism efficiency is a crucial point in the development of parallel algorithms for 

solving complicated research and engineering problems. Parallelism efficiency analysis is, as a rule, the 
evaluation of the computation process speedup (reducing the time needed for solving a problem). Forming the 
speedup estimation may be carried out for selected computational algorithm (the efficiency estimation of 
parallelizing a specific algorithm). Another important approach may be the construction of the maximum 
possible speedup estimation for the solution of a certain problem type (the efficiency estimation of the best 
parallel approach for solving a problem).  

In this chapter we will describe the computation model as an “operations-operands” graph, which can be 
used for the description of the existing information dependencies in selected algorithms of problem solving. We 
will also give the maximum possible parallelism efficiency estimations, which may be obtained as a result of the 
analysis of the existing computation models. The practical uses of the theory described here are given in the third 
part of the teaching materials. 

2.1. Computation Model as “Operations-Operands” Graph  

The model “operations-operands” graph can be used for the description of the information dependencies in 
selected algorithms of solving problems (see, for example, Bertsekas and Tsitsiklis (1989)). To simplify the 
problem we will assume that in constructing a model the periods of execution of any computational operations 
will be the same and will be equal to 1 (in some units of measurement).  Besides we will assume that the data 
transmission among computing processors is carried out instantaneously without any time consumption (which 
may be quite true, for instance, if there is a common shared memory in a parallel computing system). The 
analysis of the parallel algorithm communication complexity is carried out in the next chapter.  

Let us depict the set of the operations, carried out in the computational problem solution algorithm to be 
studied, and the information dependencies, which exist among the operations as an acyclic oriented graph  
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Figure 2.1. The Sample of computational model in the form of the “operations-operands” graph 

 

where },...,1{ VV =  is the set of graph vertices, which represent the algorithm operations being executed, and  
is a set of graph arcs (in this case  belongs to the graph  only if the operation j makes use of the result 
obtained by execution of operation i). To illustrate this Figure 2.1 shows the graph of the algorithm used to 
calculate the area of the rectangle specified by the coordinates of its two opposite angles. As  the given example 
shows, various computation schemes may be used and various corresponding computational models can be 
constructed to carry out the selected problem solution algorithm. As it will be shown later different computation 
schemes possess different capabilities of parallelizing.  Thus the task of selecting the most suitable for parallel 
execution of a computational scheme algorithm can be set in constructing a computation model.  

R
),( jir =

In the computational model of the algorithm under consideration the vertices without the incoming arcs 
may be used to  assign the input operations, and the vertex without outgoing arcs may be used for output 
operations. Let us denote the set of graph vertices without input vertices as V , and the diameter (length of 
maximum path) of the graph as . )(Gd

2.2. The Scheme of Parallel Algorithm Execution 

The algorithm operations, which do not have paths among them within the selected computation scheme, 
may be executed in parallel (for the computation scheme shown in Figure 2.1, for instance, first all the 
multiplication operations may be executed in parallel, and then the first two subtraction operations may be 
realized in parallel). A possible way to describe the parallel algorithm execution is given below (see, for 
instance, Bertsekas and Tsitsiklis (1989)).  

Let  be the number of processors to execute an algorithm. Then to execute computations in parallel it is 
necessary to specify the set (schedule) 

p

}:),,{( VitPiH iip ∈= , 

where for each operation Vi∈  the number of  processor  used to execute the operation  and the operation 
start time  are given. To make the schedule realizable it is necessary to meet the following requirements in 
specifying the set : 

iP
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1) , i.e. the same processor must not be assigned to different operations 
simultaneously,  

jiji PPttVji ≠⇒=∈∀ :,
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2) , i.e. all the necessary data must have been calculated before operation 
execution starts. 

1),( +≥⇒∈∀ ij ttRji

2.3. Evaluation of Parallel Algorithm Execution Time 

The computation scheme of the algorithm G  in combination with the schedule  may be considered as 

the model of the parallel algorithm , executed with the use of  processors. The time of parallel 
algorithm execution is determined by the maximum time value used in the schedule 

pH
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pp tHGT . 

For the selected computation scheme it is desirable to use the schedule which provides the minimum 
algorithm execution time 

),(min)( ppHp HGTGT
p

= . 

The decrease of execution time may be provided by fitting the best computation scheme  
)(min GTT pGp = . 

Estimates ,  and  may be used as the time criteria in parallel algorithm execution. 
Besides to analyze the maximum possible parallelism it is possible to specify the estimate of the fastest 
algorithm execution  

),( pp HGT )(GTp pT

pp
TT

1
min
≥

∞ = . 

Estimate  may be considered as the minimum possible time of the parallel algorithm execution if an 
unlimited number of processors are used (the concept of the computer system with the infinite number of 
processors usually called a paracomputer is widely used in the theoretical analysis of parallel computations).  

∞T

Estimate  defines the algorithm execution time if one processor is used and thus represents the execution 
time of the sequential version of problem solution algorithm. Constructing  such an estimate is an important task 
in analyzing parallel algorithms, as it is necessary to evaluate the effect of the parallelism use (of speedup while 
solving the problem). It is evident that   

1T

VGT =)(1 , 

where V , as it has already been defined , is the number of vertices of the computational scheme  without  the 

input vertices. It is important to note that if in determining the estimate  we are limited to the consideration of 
only one selected problem solution algorithm and use the value 

G

1T

)(min 11 GTT
G

= , 

then the speedup coefficients obtained  in accordance with the given estimate will characterize the efficiency of 
parallelizing  the selected algorithm. To evaluate the efficiency of the parallel solution of the computational 
problems under consideration the time of the sequential solution must be evaluated with regard to various 
sequential algorithms, that is to use the value   

1
*

1 minTT = , 

where the operation of minimum is taken over the set  of all the possible sequential algorithms for a given  
problem.  

We will consider the theoretical statements, which characterizes the properties of parallel algorithm 
execution time estimates (see Bertsekas and Tsitsiklis (1989)). 

Theorem 1. The maximum path length of the algorithm computation scheme determines the minimum 
possible time of parallel algorithm execution, i.e. 

)()( GdGT =∞ . 
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Theorem 2. Let there be a path from each input vertex for a certain output vertex in the algorithm 
computation scheme. Besides let the input power of the scheme vertices (the number of incoming arcs) not 
exceed 2. Then the minimum possible time of parallel algorithm execution is limited from below by the value.  

nGT 2log)( =∞ , 

where  is the number of input verticesin the algorithm scheme. n

Theorem 3. If the number of the used processors decreases, the algorithm execution time increases in 
proportion to the decrease of the number of processors, i.e. 

qp cTTccpq ≤⇒<<=∀ 10, . 

Theorem 4. For any number of the processors used the following upper estimate for parallel algorithm 
execution time is true: 

pTTTp p /1+<⇒∀ ∞ . 

Theorem 5. The algorithm execution time comparable with the minimum possible time  can be 
achieved if the number of processors is in the order of , to be precise, 

∞T

∞TTp /~ 1

∞∞ ≤⇒≥ TTTTp p 2/1 . 

If there are fewer processors, the time of algorithm execution cannot exceed the best computation time with the 
given number of processors more than twice, i.e. 

p
TT

p
TTTp p

11
1 2/ ≤≤⇒< ∞ . 

These theorems allow to form the basis for the following recommendations concerning the rules of parallel 
algorithm creation: 

1) The graph with the minimum possible diameter must be used while choosing the algorithm computation 
scheme (see Theorem 1); 

2) The efficient number of processors for parallel execution is determined by the value  (see 
Theorem 5); 

∞TTp /~ 1

3) The parallel algorithm execution time is limited from above by the values given in Theorems 4 and 5. 
 
In order to specify the recommendations on the creating the schedule of parallel algorithm execution we will 
consider the proof of theorem 4.  

The proof of the theorem 4. Let   be the schedule for achieving the minimum possible execution time 
. For each iteration

∞H

∞T ∞≤≤ Tττ 0, , of the  schedule execution the number of operations carried out 
during the iteration

∞H
τ  will be written as . The schedule of the algorithm execution with the use of  

processors may be constructed in the following way. We will divide the algorithm execution into  steps; at 
each step 

τn p

∞T
τ  all  operations, which were carried out during the iteration τn τ  of the  schedule, must be 

carried out. The execution of these operations must be accomplished not more than in 
∞H

⎡ ⎤pn /τ  iterations with the 
use of  processors. As a result, the time of algorithm  execution may be evaluated the following way: p pT
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The proof of the theorem offers a practical method of constructing the parallel algorithm schedule. First the 
schedule with no regard for the limitations of the number of used processors may be created (a paracomputer 
schedule).  Then according to the scheme of the theorem derivation, the schedule for a finite number of 
processors can be constructed.  
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2.4. Parallel Algorithm Efficiency Characteristics 

Speedup.  This is a speedup obtained if a parallel algorithm is used for  processors in comparison to the 
sequential computations. It is determined by the value 

p

)(/)()( 1 nTnTnS pp = , 

i.e. as the ratio of  the problem solution time on a scalar computer to the time of parallel algorithm execution 
(value  is used for parameterization of computation complexity of the problem being solved and can be 
understood as, for instance, the amount of input problem data). 

n

Efficiency. The efficiency of the processor utilization by the parallel algorithm in solving a problem is 
determined by the formula  

pnSnpTnTnE ppp /)())(/()()( 1 ==  

(the efficiency value determines the mean fraction of algorithm execution time, during which the processors are 
actually used for solving the problem). 

The expressions given above demonstrate that at best pnS p =)(  and 1)( =nEp . The following two issues 
should be taken into account in practical application of these criteria for parallel computation efficiency 
estimation.  

• Under certain circumstances the speedup may appear to be greater than the number of the processors 
being used, i.e. . In this case the speedup is considered to be superlinear. Despite the fact that these 
situations are paradoxical (the speedup is greater than the number of processors), in practice superlinear speedup 
takes place. One of the reasons of this phenomenon may be the disparity of sequential and parallel programs 
execution. For instance, when a problem is solved on one processor RAM appears to be insufficient for storing 
of all the data being processed, and as a result, it is necessary to use a slower external memory (if several 
processor are used, RAM may be sufficient because the data are being shared among processors).  One more 
reason for superlinear speedup may be the non-linear character of the dependency of the problem solution 
complexity with respect to the amount of the data being processed. Thus, for instance, the well-known bubble 
sorting algorithm is characterized by as square dependency of the necessary operation amount with respect to the 
number of data being ordered. As a result, as the data file is being distributed among the processors, the speedup, 
which is greater than the number of processors, may be obtained (this case is considered in more detail in chapter 
10). The source of superlinear speedup may be also the difference of parallel and sequential method 
computational schemes; 

pnS p >)(

• Studying the case more carefully, one may pay attention to the fact that the attempts to improve the 
parallel computation quality with respect to one of the characteristics (speedup or efficiency) may lead to the 
worsening of the situation for the other criterion , as the characteristics of parallel computation quality are 
conflicting. Thus, for instance, speedup increase may be provided by the larger number of processors, which 
leads, as a rule, to an efficiency drop. And vice versa, efficiency increase is in many cases achieved if the 
number of processors is decreased (in the limiting case the ideal efficiency 1)( =nEp  is easily provided if only 
one processor is used). As a result, the development of parallel computation method often involves selection of 
some compromise variant with respect to the desirable efficiency and speedup criteria.  

Selecting the necessary parallel method of problem solving, it is very useful to estimate the computation 
cost, which is defined as the product of the parallel problem execution time and the number of the processor 
being used.  

pp pTC = . 

In this connection it is possible to define the concept of the cost-optimal parallel algorithm, which is defined as 
the method, the cost of which is proportional to the time of the best sequential algorithm execution.  

To illustrate the introduced concepts in the next chapter we will consider a case of solving the problem of 
calculation of the partial sum for sequence of numerical values. Besides, in part 3 of the teaching materials  these 
characteristics are used to estimate the efficiency of the considered parallel algorithm for solving the typical 
problems of computational mathematics.   

2.5. Partial Sums Computations 

To demonstrate the problems, which may arise when parallel computation methods are developed, we will 
consider a rather simple problem of finding partial sums of numerical value sequence: 
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where  is the number of summable (the number of data being summarized) values ( this problem is also known 
as prefix sum problem).  

n

We will start the study of possible parallel solution method for the problem with the even simpler variant of 
its formulation: the computation of the total sum of the available set of values (in this form the summation 
problem is a particular case of the general reduction problem) 
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2.5.1. Sequential Summation Algorithm 

The traditional algorithm for solving the problem is sequential summation of the elements of a series of 
numbers  
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Computational scheme of the algorithm may be presented the following way (see Figure2.2): 
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where  is the set of operation (vertices  designate the input operations, 

each vertex 

},...,,,...,{ 1110011 nn vvvvV = nvv 001 ,...,
,1iν , , corresponds to addition of value  to the accruing amount ), and ni ≤≤1 ix S

}11),,(),,{( 111101 −≤≤= + nivvvvR iiii   

is the set of arcs  defining the information dependencies of the operations. 
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Figure 2.2. The sequential computing scheme of the summation algorithm 

As it may be noted, this “standard” summation algorithm allows only strictly sequential execution  and 
cannot be parallelized.  

2.5.2. Cascade Summation Scheme  

Summation algorithm parallelism becomes possible only if we apply another  method of computation 
process construction, based on the use of the associative property of summation. The new summation variant 
obtained as result (which is known as a cascade scheme) consists of the following (see Figure 2.3):  

- At the first operation of the cascade scheme  all the input data is partitioned to pairs, and for each pair 
the sum of their values is computed,  

- Later all the sums are also partitioned to pairs, and again the summation of the pair values is executed 
and etc. 

This computing scheme may be presented as a graph (let ) kn 2=
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Figure 2.3. Cascade scheme of the summation algorithm   

where  are graph vertices (  - input operations, 

 - the first iteration operations and etc.), and the set of the graph arcs is defined as 
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It is easily estimated that the number of the cascade scheme operations appears to be equal to the value 

nk 2log= , 

and the total number of summation operations  

11...4/2/K −=+++= nnnsequ  

coincides with the number of operations in sequential variant of the summation algorithm. In parallel execution 
of  the cascade scheme  the total number of parallel summation operations is equal to  

npar 2logK = . 

As the execution time for any computational operation is considered to be identical and equal to 1 so 
, , thus the speedup and efficiency characteristics of the summation algorithm cascade 

scheme may be estimated as  
seqT K1 = рarpT K=

,log/)1(/ 21 nnTTS PP −==  

),log)2//(()1()log/()1(/ 221 nnnnpnpTTE pp −=−==  

where  is the number of processors  necessary for the cascade scheme execution. 2/np =

The analysis of the obtained characteristics shows that the time of parallel cascade scheme execution 
coincides with the paracomputer estimate in theorem 2. However, in this case the efficiency of processors 
decreases when the number of summable values increases: 

∞→→ nifE p 0lim  

2.5.3. Modified Cascade Scheme 

Asymptomatic nonzero efficiency may be provided if, for instance, a modified cascade scheme is used (see 
Bertsekas and Tsitsiklis (1989)). To simplify the estimate creation it is possible to assume that . In 
this case all the calculation in the new variant of the cascade scheme are subdivided into two sequentially 
executed summation phases (see figure. 2.4): 

sk kn 2,2 ==

− During the first phase of computations all the summarized values are subdivided into  

groups. There are  elements in each group. Then the sum of the values is calculated for each group by 

 )log/( 2 nn
n2log
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the sequential summation algorithm. The calculations in each group may be carried out independently (that is in 
parallel that requires not fewer that  processors); )log/( 2 nn

8 

 − During the second phase a conventional cascade scheme is used for the obtained  sums of 
separate groups. 

)log/( 2 nn
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Figure 2. 4. Modified cascade summation scheme 

Thus the execution of the first phase requires  parallel operations if n2log )log/( 21 nnp =  processors 
are used. The execution of the second phase requires  

nnn 222 log)log/(log ≤  

parallel operations for 2/)log/( 22 nnp =  processors. As a result, this summation method is characterized 
by the following values: 

nTP 2log2= , )log/( 2 nnp = . 

With respect to the estimates obtained the speedup and efficiencyof the modified cascade scheme are defined by 
the relations: 

,log2/)1(/ 21 nnTTS PP −==  

.2/)1()log)log/(2/()1(/ 221 nnnnnnpTTE pp −=−==  

The comparison of the given estimates to the conventional cascade scheme characteristics  shows that the 
speedup for the suggested parallel algorithm has decreased twice. However, for the efficiency of the new 
summation method it is possible to obtain asymptotic nonzero estimate from below 

,25.02/)1( ≥−= nnEP  ∞→→ nwhereEp 5.0lim .  

It may be also noted that the given values are achieved when the number of processors is equal to that defined in 
theorem 5. Besides it should be emphasized that, unlike the conventional cascade scheme, the modified cascade 
algorithm is cost-optimal as the calculation cost in this case  

)log2)(log/( 22 nnnpTC pp ==  

is proportional to the time of sequential algorithm execution. 

2.5.4. Computation of All Partial Sums 

Now we will get back to original problem of computation of all  partial sums for a numerical sequence and 
analyze the possible methods of parallel and sequential computations. The computation of all partial sums on a 
scalar computer may be done by means of  the conventional sequential summation algorithm with the same 
number of operations (!) 



nT =1 . 

In parallel execution the explicit use of the cascade scheme does not bring the desirable results. Efficient 
parallelizing requires new approaches (may be even those which do not have analogs in sequential 
programming) to  the development of new parallel-oriented  algorithms for solving problems. Thus, for the 
problem under consideration the algorithm, which provides obtaining the results in  parallel operations 
(like the case of the total sum computation) may be the following (see Figure 2.5) (see Bertsekas and Tsitsiklis 
(1989)): 

n2log

− Before the beginning of the computations a copy of vector  of the summarized values is created 
( ); 

 

 

S
xS =
− Later at each summation iteration  ,i ni 2log1 ≤≤ , an auxiliary vector Q  is formed by shifting 

vector  to  positions to the right (the positions to the left that become released due to the shift are set to 
zero values). The algorithm iteration is completed by the parallel operation of vector   and vector Q  
summation.  
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Figure 2.5. The scheme of parallel algorithm computation  of all partial sums  
     (values  denote the sums of values from i  to  elements of the numerical sequence) jiS − j

Altogether the parallel algorithm is executed in  parallel addition  operations. At each algorithm iteration 
 scalar addition operations are executed in parallel, so the total number of the executed scalar operations is 

defined by the value 

n2log
n

nnpar 2logK =  

(the parallel algorithm contains a greater number of operations in comparison to the sequential summation 
method). The necessary number of processors is defined by the number of summarized values ( np = ). 

With respect to the obtained relations the speedup and efficiency of the parallel computation algorithm for 
computations of all partial sums are estimated in the following way: 

,log// 21 nnTTS PP ==  

nnnnnpnpTTE PP 2221 log/1 )log/()log/(/ ==== . 

As it is clear from the given estimates, the algorithm efficiency also decreases when the number of summarized 
values increases. When it is necessary to increase this characteristic an algorithm modification may appear to be 
useful as it was in case of the conventional cascade scheme.  

2.6. Estimation of Maximum Attainable Parallelism  

Estimation of parallel computation quality requires  the knowledge of the best (maximum attainable) values 
of speedup and efficiency . However, attainment of the ideal values S =pp  for speedup and E =p 1 for efficiency 
may not be provided for all computationally complicated problems. Thus, for the problem considered in 2.5 the 
minimum attainable time of the parallel computation of a sum of numeric values is log n2 . The theory described 
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at the beginning of the section may contribute to a certain extend in the solution of the problem. In addition we 
will consider several patterns of relationship, which may be highly useful in constructing estimates of the 
maximum attainable parallelism.1). 

1. Amdahl’s law.  Maximum speedup obtainment may be hindered by the presence of sequential 
calculations in the computations being carried out, as the former cannot be parallelized.  Let  f   be the part of the 
sequential calculations in the applied data processing algorithm, then, in accordance with Amdahl’s law, the 
computation process speedup, if  p  processors are used, is limited by the value 

f
S

pff
S p

1
/)1(

1 * =≤
−+

≤ . 

Thus, for instance, if there are only 10% sequential instructions in the executed computations, the impact of 
parallelism use cannot exceed the tenfold data processing speedup. For the problem under consideration the 
computation of the sum of values for the cascade scheme the part of the sequential computations is 

. As a result, the value of the possible speedup is limited by the estimate . nnf /log2= nnS 2
* log/=

Amdahl’s law characterizes one of the most serious problems in the area of parallel programming (there are 
practically no algorithms without a certain part of sequential instructions). However, the part of sequential 
actions characterizes very often the sequential feature of the applied algorithms and does not characterize the 
possibility of parallel problem solution. As a result, the part of sequential computations may be decreased 
considerably if we choose methods that more appropriate for parallelizing.  

It should be also mentioned that Amdahl’s law is considered under the assumption that the part of 
sequential computation f  is  a  constant  value and does not depend on the parameter n , which defines the 
computational problem complexity. However, for a great number of problems the part f=f(n)  is a descending 
function of n.  In this case the speedup for a fixed number of processors may be increased at the expense of 
increasing the computational complexity of the problem to be solved. This remark may be formulated as the 
statement that the speedup S = S (n) p p is the ascending function of the parameter n  (this statement is often 
referred to as the Amdahl’s effect). Thus, for example, for a problem under consideration – the computation of 
the sum of values – when a fixed number of processors p  are used, the summarized data set may be subdivided 
into blocks of n/p size.  Partial sums may be computed in parallel for the blocks first. Then these sums may be 
summarized with the help of the cascade scheme. The duration of the sequential part of the executed operations 
(minimum possible parallel execution time) is in this case  

ppnTp 2log)/( += ,  

that leads to the estimation of the sequential computation part as the value  
nppf /log)/1( 2+= . 

This expression shows that the sequential computation fraction f  decreases with the increase of n.  And in the 
limiting case we will obtain the ideal estimate of the maximum possible speedup S*=p . 

2. Gustafson-Barsis's law.  Let us estimate the maximum attainable speedup proceeding from the existing  
fraction of sequential calculations  in the executed parallel computations:  

pnn
ng

/)()(
)(

πτ
τ
+

= , 

where τ (n)  is the time of sequential part and π (n)  is the time of parallel part of computation, i.e. 

)()(1 nnT πτ += , pnnTp /)()( πτ += . 

With regard for the introduced value g  we can obtain  

τ (n)=g ⋅ (τ (n)+π  (n)/p) ,  π (n)=(1-g)p ⋅ (τ (n)+π (n)/p) ,  

that allows us to construct the speedup estimate 

pnn
pggpnn

pnn
nn

T
T

S
p

p /)()(
))1()(/)()((

/)()(
)()(1

πτ
πτ

πτ
πτ

+
−++

=
+
+

== , 

                                                           
1) As earlier we will deduce the regularities with no account for the costs connected with data transmission arrangement. 

Communication complexity of parallel algorithms will be analyzed in Section 3. 
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which after simplification may be reduced to Gustafson-Barsis's law (see Quinn (2004)) 

gpppggS p )1()1( −+=−+= . 

In connection with the problem under consideration – summation of values when  p   processors are used – the 
time of parallel execution, as it has been mentioned above, is  

ppnTp 2log)/( += ,  

that corresponds to the sequential fraction  

ppn
p

g
2

2

log)/(
log
+

= . 

If we increase the number of the summarized values, the value g  may be negligibly small. It will provide 
attaining the ideal possible speedup S =pp . 

One more important issue should be taken into account while considering the Gustafson-Barsis's law. If the 
number of processors used increases, the speed of decreasing the time of parallel problem solving  may slacken  
(after it exceed a certain threshold).  However, the complexity of the problems being solved may be increased at 
the expense of the computation time decrease (thus, for instance, for the problem under consideration we may 
increase the set of summarized values). The estimate of the obtained speedup may be defined with the help of the 
patterns, which have been formulated above. Such an analytic estimate is particularly useful as the problem 
solution of such more complicated cases on one processor may appear rather time-consuming and even 
impossible because of the RAM shortage, for instance. With regard to these circumstances the speedup estimate 
obtained in accordance with the Gustafson-Barsis's law is also referred to as the scaled speedup. The fact is, this 
characteristic may show how efficiently parallel computation may be organized if the complexity of problems 
increases.  

2.7. Analysis of Parallel Computation Scalability  

The aim of parallel computation application is in many cases not only to decrease the computation 
execution time, but also to provide the possibility of solving more complicated variants of problem (such 
statements of the  problem which cannot be solved if only uniprocessor computing systems are used).   The 
parallel algorithm capability to efficiently use processors when the computation complexity increases is an 
important characteristic of the executed calculations. In this connection, the parallel algorithm is referred to as a 
scalable algorithm if with the increase of the number of processors it provides the speedup increase maintaining 
constant level of efficiency in processor use . A possible method to characterize the scalability properties  is 
described below.   

Let us assess the total overhead expenses, which take place in parallel algorithm execution  

10 TpTT p −= . 

The total overhead expenses arise, as it is necessary to organize the interaction of processors. It is also necessary 
to fulfill some additional actions,  synchronization of parallel computation  and etc.  

Making use of the previously introduced notation we can get new expressions for the time of solving the parallel 
problem solution and the speedup corresponding to it: 
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With the use of the obtained relation the efficiency of the processor use may be expressed as 
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The latter expression shows that if the problem complexity is fixed (T =const1 ), then the efficiency will 
decrease if the number of processors increases at the expense of the total overhead costs T0 . If the number of 
processors is fixed, the efficiency of processor used may be improved by the increase of the complexity T1  of 

11 



the problem being solved (it is assumed that with the increase of the complexity parameter n the total overhead 
expenses T0  increase more slowly than the amount of computations T1 ). As a result, if the number of processors 
increases, the necessary level of efficiency may be provided in the majority of cases by means of the 
corresponding problem complexity increase. In this connection the proportion of the necessary rates of 
calculation complexity increase and the number of processors being used becomes an important feature of 
parallel computations. 

Let E=const  be the desirable efficiency level of the executed computations. Using the equation for the 
efficiency we may obtain 

E
E

T
T −

=
1

1

0   or  . )1/(,01 EEKKTT −==

The dependency n=F(p ) between the problem complexity and the number of processors generated by the latter 
relation is referred to as isoefficiency function (see Kumar et al. (1994)). 

To illustrate this we will show the derivation of the isoefficiency function for the problem of summarizing 
numeric values. In this case  

ppnppnpTpTT p 2210 log)log)/(( =−+=−=  

and the isoefficiency function looks as  

pKpn 2log= . 

As a result, for instance, to provide the efficiency level E=0.5  (i.e. K=1) when the number of processors is 
p=16 , the number of summarized values must not be smaller than n=64 . If the number of processors is 
increased from p  to  q  (q>p) it is necessary to increase the number n of the summarized values  
(qlog q2 )/(plog p2 )  times to provide the proportional speedup increase (Sq /Sp )=(q/p) . 

2.8. Summary 

The chapter describes the computational model as “operations-operands” graph, which may be used for the 
description of the existing information dependencies in the selected algorithms of problem solving. The model is 
based on an acyclic-oriented graph, the vertices of which represent operations, and the arcs correspond to the 
data dependencies of operations . If such a graph is available, it is enough to set the schedule, according to which 
the distribution of the executed operations among processors is fixed, to define a parallel algorithm.  

Representation of calculations with the help of such models allows us to analytically obtain a number of 
characteristics of the parallel algorithms being developed. Among those characteristics there is the execution 
time, the optimal schedule scheme, the estimates of maximum possible processing speed of the problem solving 
methods. The concept of paracomputer as a parallel system with an unlimited number of processors is considered 
for  simpler constructing theoretical estimates.  

In order to estimate the efficiency of the parallel computation methods we have discussed such widely used 
in theory and practice of parallel programming basic quality indicators as speedup and efficiency. Speedup 
shows how many times faster solving the problem is carried out, if several processors are used. Efficiency 
characterizes the fraction of time when the processors of a computing system are actually used. The cost of 
computations is also an important characteristic of the developed algorithm. It is defined as the product of 
parallel problem solving time and the number of processors used.  

To demonstrate the applications of the models and the methods of parallel algorithm analysis we have 
considered the problem of finding the partial sums of a numeric value sequence.  The example helps us to 
illustrate the problem of sequential algorithm parallelizing complexity. The complexity arises, as these 
algorithms are not initially oriented at the possibility of parallel computation arrangements.  To demonstrate the 
“hidden” parallelism we have shown the possibility of converting the initial sequential computation scheme and 
described the cascade scheme, which is obtained as a result of the conversion. Considering the same problem we 
have shown the possibility to introduce redundant computations for achieving greater parallelism in the executed 
computations.  

In conclusion we have considered the problem of creating the estimates of maximum attainable values of 
efficiency criteria. Amdahl’s law may be used for the creation of such estimates, which allows us to take into 
account the existing sequential (non-parallelilzed) computations in the problem solving methods. Gustafson-
Barsis's law provides the construction of scaled speedup estimates used to characterize how efficiently parallel 
computations may be organized with the increase of problem complexity. To define the dependence between the 
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problem complexity and the number of processors, the observation of which provides the necessary efficiency 
level of parallel computations, we have introduces the concept of the isoefficiency function. 

2.9. References 

Additional information on parallel computation modeling and analysis may be found in, for instance, 
Bertsekas and Tsitsiklis (1989). Useful information is also contained in Kumar et al. (1994), Quinn (2004).  

The consideration of the academic problem of the numeric value sequence summation was carried out in 
Bertsekas and Tsitsiklis (1989). 

For the first time Amdahl’s law was stated in Amdahl (1967). Gustafson-Barsis's law was published in 
Gustavson (1988).  The concept of isoefficiency was proposed in Grama et al. (1993). 

A systematic discussion (for the time when the book was published) of the parallel computation modeling 
and analysis issues  is given in Zomaya (1996). 

2.10. Discussions 

1. How is the “operations-operands” model defined?  
2. How is the schedule for the distribution of computations among processors defined? 
3. How is the time of parallel algorithm execution defined? 
4. What schedule is optimal? 
5. How can the minimum possible time of problem solving be defined? 
6. What is a paracomputer? What can this concept be useful for? 
7. What estimates should be used as the characteristics of the sequential problem solving time? 
8. How to define the minimum possible time of parallel problem solving according to “operands-

operations” graph? 
9. What dependences may be obtained for parallel problem solving time if the number of processor being 

used is increased or decreased? 
10. What number of processors corresponds to the parallel algorithm execution time (periods) comparable 

in the order with the estimates of minimum possible  time of problem solving? 
11. How are the concepts “speedup” and “efficiency” defined? 
12. Is it possible to attain superlinear speedup? 
13. What is the contradictoriness of the speedup and efficiency characteristics? 
14. How is the concept of computation cost defined? 
15. What is the concept  of the cost-optimal algorithm ? 
16. What does the problem of parallelizing a sequential algorithm of the numeric values summation lie in? 
17. What is the essence of the summation cascade scheme? What is the aim of considering the modified 

version of the scheme? 
18. What is the difference between the speedup and efficiency characteristics  for the discussed versions of 

the summation cascade scheme? 
19. What is the parallel algorithm of all the partial sums computation of a numeric value sequence? 
20. How is Amdahl’s law formulated? Which aspect of parallel computation does it allow to take into 

account? 
21. What suppositions are used to ground the Gustafson-Barsis's law? 
22. How is the isoefficiency function defined? 
23. Which algorithm is scalable? Give examples of methods with different level of scalability. 

2.11.  Exercises 

1. Develop a model and evaluate speedup and efficiency of the parallel computations:  
• For the problem of the scalar product of two vectors 
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, 

• For the problem of choosing the maximum and minimum values for the given set of numeric values 
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• For the problem of finding the mean value for the given set of numeric values 

∑
=

=
N

i
ia

N
y

1

1 . 

2. Evaluate according the Amdahl's law the maximum attainable speedup for the problems given in  11.1 
3. Evaluate the scalability speedup for the problems in 11.1 
4. Construct the isoefficiency function for the problems given in  11.1 
5. Work out a model and make a complete analysis of parallel computation efficiency (speedup, 

efficiency, maximum attainable efficiency, scalability speedup, isoefficiency function) for the problem of matrix 
– vector multiplication.  
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